PRO-GET

Technical Data
 INF-114 INF-210

The New

 Standard
INFUSION EPOXY

COMBINED FEATURES

Very low viscosity for rapid saturation of fiberglass, Kevlar and carbon fiber laminate with resin infusion and VARTM processes.
Fast cure speed hardener provides approximately 75 to 90 minutes of working time at $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$. A typical laminate will be gelled in 2 to 3 hours.

This combination is formulated specifically for resin infusion and VARTM processes. Do not use in open mold applications.
Room temperature cure properties suitable for many composite components and structures.
T_{g} as high as $197^{\circ} \mathrm{F}\left(92^{\circ} \mathrm{C}\right)$ with proper post cure providing excellent temperature stability and great part cosmetics.

Cost effective, high performance epoxy formulation for synthetic composite manufacturing.
Quality-control tinting is available at no extra charge; simply add "QC" after the product code on your order.
Shelf life is 3 years for resin and 2 years for hardener when properly stored ${ }^{3}$.

HANDLING PROPERTIES

Property	Standard	Units	$72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$	$77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$	$85^{\circ} \mathrm{F}\left(29^{\circ} \mathrm{C}\right)$
150g Pot Life	ASTM D2471	minutes	28-36	24-30	18-24
500 g Pot Life	ASTM D2471	minutes	27-33	22-28	18-22
Viscosity Mixed	ASTM D2196	cP	304	241	188
Viscosity (resin)	ASTM D2196	cP	1433		
Viscosity (hardener)	ASTM D2196	CP	16		

MIX RATIO

Method	Resin:Hardener	Resin:Hardener
Weight	$3.65: 1$	$100: 27.4$
Weight Range	$3.92: 1-3.56: 1$	$100: 25.5-100: 28.1$
Volume	$3.00: 1$	$100: 33.3$
Volume Range	$3.23: 1-2.94: 1$	$100: 30.9-100: 34.0$

DENSITY

State	Units	$72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$
Cured	$\mathrm{lb} / \mathrm{gal}(\mathrm{g} / \mathrm{cc})$	$9.53(1.14)$
Resin	$\mathrm{lb} / \mathrm{gal}(\mathrm{g} / \mathrm{cc})$	$9.49(1.14)$
Hardener	$\mathrm{lb} / \mathrm{gal}(\mathrm{g} / \mathrm{cc})$	$7.82(0.94)$

VISCOSITY VS TEMPERATURE

Test specimens were neat epoxy (without fiber reinforcement). Typical values, not to be construed as specification.

INF-114~INF-210
 INFUSION EPOXY

MECHANICAL PROPERTIES

Property	Standard	Units	$\begin{gathered} 72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right) \\ \times 4 \mathrm{wk} \end{gathered}$	$\begin{gathered} 77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right) \\ \times 2 \mathrm{wk} \end{gathered}$	$\begin{gathered} \text { RT Gelation } \\ +120^{\circ} \mathrm{F}\left(49^{\circ} \mathrm{C}\right) \\ \times 8 \mathrm{hrs} \end{gathered}$	$\begin{gathered} \text { RT Gelation } \\ +140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right) \\ \times 8 \mathrm{hrs} \end{gathered}$	$\begin{gathered} \text { RT Gelation } \\ +180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right) \\ \times 8 \mathrm{hrs} \end{gathered}$
Hardness	ASTM D2240	Type D	86	86	86	86	86
Compression Yield	ASTM D695	psi (MPa)	14,700 (101)	16,000 (110)	14,800 (102)	14,900 (103)	15,000 (103)
Tensile Strength	ASTM D638	psi (MPa)	8,670 (60)	10,100 (70)	11,000 (76)	11,000 (76)	11,300 (78)
Tensile Modulus	ASTM D638	psi (GPa)	$5.57 \mathrm{E}+5$ (3.84)	$5.2 \mathrm{E}+5$ (3.59)	$5.06 \mathrm{E}+05$ (3.49)	$4.96 \mathrm{E}+05$ (3.42)	$4.56 \mathrm{E}+05$ (3.14)
Tensile Elongation	ASTM D638	\%	2.0	2.6	4.7	4.9	5.7
Flexural Strength	ASTM D790	psi (MPa)	13,500 (93)	15,900 (110)	18,600 (128)	18,800 (130)	19,300 (133)
Flexural Modulus	ASTM D790	psi (GPa)	$4.83 \mathrm{E}+5$ (3.33)	$5.28 \mathrm{E}+5$ (3.64)	$4.89 \mathrm{E}+05$ (3.37)	$4.90 \mathrm{E}+05$ (3.38)	$4.69 \mathrm{E}+05$ (3.23)

THERMAL PROPERTIES

Property	Standard	Units	$\begin{gathered} 72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right) \\ \mathrm{x} 4 \mathrm{wk} \end{gathered}$	$\begin{gathered} 77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right) \\ \times 2 \mathrm{wk} \end{gathered}$	$\begin{gathered} \text { RT Gelation } \\ +120^{\circ} \mathrm{F}\left(49^{\circ} \mathrm{C}\right) \\ \times 8 \mathrm{hrs} \end{gathered}$	$\begin{gathered} \text { RT Gelation } \\ +140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right) \\ \times 8 \mathrm{hrs} \\ \hline \end{gathered}$	$\begin{gathered} \text { RT Gelation } \\ +180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right) \\ \times 8 \mathrm{hrs} \end{gathered}$
Tg DMA Peak Tan Delta	ASTM E1640 ${ }^{1}$	${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	165 (74)	167 (75)	191 (88)	204 (96)	217 (103)
Tg DMA Onset Storage Modulus	ASTM E1640 ${ }^{1}$	${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	148 (64)	146 (63)	166 (75)	182 (83)	197 (92)
Tg DSC Onset- 1st Heat	ASTM E1356	${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	141 (61)	142 (61)	168 (76)	176 (80)	185 (85)
Heat Deflection Temperature	ASTM D648	${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	134 (57)	136 (58)	153 (67)	164 (73)	175 (79)
Tg DSC Ultimate	ASTM E1356	${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	185 (85) ${ }^{2}$				

${ }^{1} 1 \mathrm{~Hz}, 3^{\circ} \mathrm{C}$ per minute.
${ }^{2}$ Additional post cure may be required; contact Technical Department for details.
Test specimens were neat epoxy (without fiber reinforcement).
Typical values, not to be construed as specification.
${ }^{3}$ Store PRO-SET® Epoxy resins and hardeners at room temperature in sealed containers until shortly before use. As with many highperformance epoxy resins, repeated exposure to low temperatures during storage may cause the resin to crystallize. If this occurs, warm the resin to $125^{\circ} \mathrm{F}$ and stir to dissolve crystals. Hardeners may form carbamation when exposed to CO_{2} and moisture in the atmosphere for extended periods of time. Prevent carbamation by protecting hardeners from exposure until immediately prior to processing.

